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I. Introduction: 

One of the most common practical applications of Large Language Mo-
dels (LLMs) is text summarization, which can contribute to several ot-
her fields, including retrieval-augmented generation (RAG), data analysis 
and long-document Q&A. 

The focus of this whitepaper narrows to examine one specific, yet sig-
nificant, application, meeting transcription and summarization. We will 
explore how LLMs can automate this manual task and improve overall 
efficiency and output quality. 

In this whitepaper, we share our technical journey to build a privacy-re-
specting, locally hosted meeting summarization tool. Using open-source 
frameworks like Whisper and open LLMs, we aim to give technical gui-
dance on how to actually build such a system and to share our journey 
with ups and downs following the stream of recent advances in Artificial 
Intelligence.

II. Why (another) meeting summarization?

Meeting notes are an important key to aligning and documenting the most 

important outcomes and are additionally an essential piece to asynchronous 

communication. Traditionally, the contents of organizational meetings are 

captured manually, often requiring a designated individual to transcribe and 

summarize key points - a method that is time-intensive, biased on the perspec-

tive of the scribe and partially preventing the scribe from participating in the 

discussions. Various stand-alone generative AI tools or built-in tools such as 

the Microsoft Copilot within Teams, allow us now to transcribe our meetings 

in real-time (also to different languages) and to give us a summary of these 

transcripts. This will be more and more conveniently integrated into our office 

processes but raises the question if we want to record, store and analyze all 

our communications. 
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Imagine a casual exchange about your weekend or a confidential side note 

to your colleague during a meeting, which will be also added to the meeting 

notes and stored as transcript and potentially audio file. Knowing that everyt-

hing will be recorded also changes the dynamics of our communication and 

responses will be more controlled and the meeting tone more serious. For the 

same reasons participants will be more reluctant to use such a tool. Moreover, 

relying on third-party services introduces risks, from data breaches to regula-

tory violations (e.g. GDPR).

Our aim was to build a locally hosted solution that encompasses the real time 

transcription of meetings from an audio feed and then generates meaningful 

summaries using open-source tools on limited local hardware. Our solution 

should remove all data (audio, transcript) after having created the summary 

and achieve the following benefits:

•	 Enhanced privacy and data control: By hosting the transcription and sum-

marization tool locally, we ensure that sensitive meeting data remains on-

premises, reducing the risk of exposure to third-party services and giving 

organizations full control over their data.  

•	 Customizable and flexible: An own solution allows for greater customizati-

on such as adjusting the model for domain-specific language, customizing 

summarization criteria, and integrating with existing workflows. 

•	 Improved trust and user adoption: Knowing that meeting content isn’t 

automatically stored or analyzed externally can increase user trust and 

willingness to adopt the tool. 

•	 Hands-on experiences: Testing and learning how to make use of the  

recent model advances and newly created frameworks as  

well as to be aware of their limitations.
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In the following we want to showcase the possible ways to make use of state-

of-the-art (and open source) LLMs and NLP tools to tackle this problem of 

speech-to-text and abstract summarization.

This approach consists of the following: the system captures live audio stre-

ams from meetings, transcribes them on-the-fly, and then creates concise 

summaries that retain pivotal details and the surrounding context. The follo-

wing diagram gives an overview of all included steps:

____________________
Figure 1: End-to-end workflow of the locally hosted meeting transcription and summarization system. 
The process includes capturing live audio, transcribing it with Whisper, and generating summaries 
using open-source LLMs.
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III. Our technical setup

Our server has the following specifications:

•	 Processors: Dual Intel® Xeon® E5-2620 v4 (32 threads)

•	 RAM: 128GB

•	 GPU: NVIDIA RTX 4090 with 24GB VRAM 

Despite having a lot of system memory and CPU cores, we are constrai-
ned by GPU memory. This limitation directly affects our ability to run both 
the transcription model and the large language model simultaneously on 
the GPU, which is a requirement for generating the transcriptions and 
summaries fast and parallel for different meetings. To mitigate these re-
source constraints, we prioritized efficient model configurations, inclu-
ding memory optimization techniques and strategic GPU utilization. This 
approach allowed us to balance hardware limitations with the system‘s 
performance goals.

IV. 3 steps to Summarization

Creating a summarization pipeline only consists of three major building 
blocks:

A. 	Generating multilingual transcripts from given audio

B. 	Set up of your own locally hosted large languagemodel (LLM)

C. 	Building the meeting summarization pipeline

We will give an overview of our chosen components and give details of 
how we set them up, what worked but also what did not work for us. 
Challenges along the way included:

•	 Choosing the right model and the right model size

•	 Efficient use of limited local hardware resources

•	 Setting up a proper evaluation framework
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A. Step 1:
 
Whisper – generate multilingual transcripts on 
your own system

For our speech-to-text engine, which creates the transcript based on a gi-

ven audio file, we used Whisper. Whisper is one of OpenAI’s open-source 

multitasking speech recognition models designed for multilingual speech re-

cognition, speech translation and language identification. It is built using a 

transformer architecture and uses an encoder-decoder structure together with 

attention mechanisms to process audio recordings. This model has been trai-

ned on 680,000 hours of multilingual data from several sources, and the sheer 

size and diversity of its training data makes Whisper a very robust model in 

transcription accuracy. Whisper is best performing on English data sets but 

can also handle several other languages such as German, French or Spanish. 

Particularly, German is important for several of our meetings.

Since Whisper was open sourced from its release, the open-source commu-

nity quickly built upon it, notably with the release of whisper.cpp. This C++ 

library optimizes the model for low latency and high throughput inference and 

even includes quantization features to allow for less memory and disk usage. 

All of this makes the whisper model lightweight, efficient and highly portable, 

since it can run even on very constrained hardware (e.g. a smartphone or even 

a Raspberry Pi!).

Whisper is available in various model sizes, from tiny to large, which need to 

be chosen based on the trade-off between transcription accuracy and proces-

sing time. In our experience, the small model delivered satisfactory results for 

English. However, for German, we needed the large model to achieve reaso-

nably accurate transcriptions. One word of advice, no matter which release 

of Whisper you are using, it is still a probabilistic model and prone to make 

mistakes.

http://whisper.cpp
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Using whisper.cpp has allowed us to quickly experiment with different model 

sizes and performance trade-offs, which helped us to assess how well the mo-

del sizes meet our needs across these multilingual transcription tasks. Howe-

ver, we found that integrating whisper.cpp into our setup introduced several 

difficulties due to the lack of a straightforward Python API, which made the 

process more complex and required additional efforts, particularly when buil-

ding the library to enable CUDA/GPU acceleration support.

To address these integration challenges, we also explored Faster Whisper as 

an alternative method to self-host Whisper on our premises. This library is built 

on the CTranslate2 inference engine, which is optimized for efficient, high-per-

formance inference of transformer models and offers an easy-to-use, Python-

friendly API. 

In our experiments, as shown in Table 1, we found that this library was not 

only easier to set up and integrate into our existing workflows, but it also was 

more efficient in GPU memory allocation and transcription speed. For exam-

ple, transcribing a one-hour meeting takes less than a minute and uses only 

about 1.8 GB of VRAM, making it exceptionally fast and resource-efficient for 

our meeting transcription tasks.

____________________
Table 1: Performance (latency and VRAM usage) comparison between Faster Whisper and whisper.cpp 

for transcribing a one-hour audio file.

In the next section we will have a look at the second step of how-to self-host 

a LLM and which frameworks are helpful.

Latency (minutes) VRAM (GB)

Faster Whisper 0.82 1.8

Whisper.cpp 1.58 1.9

https://github.com/SYSTRAN/faster-whisper


8|18

B. Step 2: 

Self hosting a LLM – efficient use  
of a locally owned model

To generate the summaries from the transcripts, we use a large language mo-

del (LLM) to process and extract the key points while retaining the context 

and important details of the meetings. By applying a LLM to the raw meeting 

transcripts, we can automate the summarization process, not only saving time 

but also ensuring consistency in capturing critical information from our inter-

nal meetings.

Given that the contents of our internal meetings are often sensitive, we prio-

ritize keeping this data within our own infrastructure, avoiding the need to 

send it to external servers. For such use cases, deploying an LLM on-premises 

offers several benefits in terms of control, privacy and customization, such as:  

•	 No Vendor Lock-In: Using open-source models avoids dependence on spe-

cific vendors, offering more flexibility and cost savings by not depending on 

usage costs associated with proprietary models. 

•	 Privacy and Data Control: Self-hosting ensures that all sensitive data re-

mains entirely within the organization’s infrastructure, reducing the risk of 

data leakage and enabling stricter control over data handling and retention 

policies.

•	 Keeping Up with the State-of-the-Art: Open-source models are increasingly 

more capable due to the fast pace of community contributions. Self-hosting 

allows us to explore the latest model developments, keeping track of tools, 

methods and model improvements as soon as they become available.

In a self-hosted LLM setup, there are two main components involved: the in-

ference engine, and optionally, but highly recommended, an inference server. 

The inference engine is responsible for executing the model and managing 

the generation process efficiently, such that resource usage is optimal, and 

the responses are fast. An inference server can be seen as an extension of the 

engine, handling incoming and outgoing requests, typically through HTTP or 

gRPC, which makes integration with external applications easier and also ena-

bles scaling for multiple concurrent users.
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When selecting a model to run within this self-hosted setup, especially in a 

single GPU server like ours, we had to consider several factors to ensure effi-

ciency and maximize performance. The number of model parameters, text ge-

neration throughput, output latency, and hardware constraints all influenced 

our decision on a framework that could best meet our needs. 

Furthermore, techniques like weight quantization were quite important, as they 

allowed us to reduce memory usage and improve processing speeds, making 

it feasible to deploy larger models on our limited hardware. These considera-

tions were what guided us in identifying a combination of inference engine 

framework and model choice that would be optimal for our setup.

In the following we compare some of the currently most used inference en-

gines and share our experience with them for our text generation tasks.

HuggingFace’s Text Generation Inference (TGI)

This framework is designed specifically for serving large language models ef-

ficiently and on large scale setups, it has a relatively simple launcher to serve 

popular LLMs and several production-ready features such as tensor paralle-

lism for multi-GPU settings, continuous batching of incoming requests to in-

crease total throughput, as well as optimized code for inference, using Flash 

Attention and Paged Attention on widely used transformer architectures.

Another compelling aspect of Hugging Face TGI is its integration with the 

Hugging Face Hub model ecosystem, allowing easy access to several commu-

nity contributed pre-trained and fine-tuned models. It also offers an OpenAI-

compatible API, which makes it easy to integrate with applications already 

designed around proprietary models, such as GPT-4o.

However, TGI does require constant GPU allocation, meaning that the model 

remains in GPU memory once loaded, which can be a limitation in environ-

ments with shared and limited GPU resources. In our experiments, we were 

https://github.com/huggingface/text-generation-inference
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able to fit up to a 13-billion parameter model within 24 GB of VRAM using 8-bit 

quantization and a context length of at most 8,192 tokens. This configuration 

yielded a throughput of around 70 tokens per second, making it quite fast in 

terms of generation speed.

Due to the high VRAM usage, TGI wasn’t exactly suited for our use case, as 

we also needed to allocate the Whisper model in VRAM simultaneously. This 

requirement meant that we couldn’t allow the LLM to occupy all the VRAM 

continuously, which led us to explore alternative inference engines better sui-

ted to our single GPU setup.

Llama.cpp

Another framework we explored is llama.cpp, a CPU-first, high-performance 

C++ library that allows for broad device compatibility. It is designed to work 

with several backends, including CUDA, Metal, Vulkan and CPU directly, ma-

king it feasible to host LLMs even on smaller devices like smartphones or 

low-powered computers. It also supports CPU offloading, which allows layers 

of the model to be shifted from the GPU to the CPU when VRAM is a limiting 

factor.

For example, in our single 4090 setup, llama.cpp can support models up to 

56 billion parameters by using 4 bits-per-weight quantization, with a context 

length of 8192 tokens, resulting in a throughput of roughly 5 tokens per se-

cond and utilizing around 22 GB of VRAM. Despite allowing us to self-host 

larger models, this framework does have some relevant limitations. The manu-

al build process for the library can require quite a bit of technical knowledge 

and effort, as users must compile the library and configure it for their specific 

hardware, which can make the overall setup challenging.

Furthermore, it also lacks a fully featured inference server, which adds an extra 

layer of complexity to deploy and manage models effectively. Overall, we also 

found out on our experiments that the text generation speeds are generally 

slower than those of GPU-first frameworks, impacting throughput, especially 

for larger models. These are the reasons why we decided against using llama.

cpp for our setup, as the limitations outweighed the benefits for our specific 

use case.

https://github.com/ggerganov/llama.cpp
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Our Text Generation Engine of Choice:
ExLlamaV2

After evaluating the previously discussed LLM inference frameworks, we cho-

se ExLlamaV2 as our text generation engine due to its high-performance in-

ference and efficient memory management features, which aligned well with 

our single GPU setup and met our speed and latency requirements. 

ExLlamaV2 is an incredibly fast inference engine, specifically designed with 

several optimizations, such as Paged Attention, Flash Attention, continuous 

batching, and prompt caching, plus the EXL2 format, which allows it to store 

the weights in an efficient manner. All these features help enhance its overall 

throughput and reduce latency for text generation tasks. Nonetheless, unlike 

other frameworks, it operates as an engine only, so an external inference ser-

ver, such as TabbyAPI, is required to orchestrate and handle incoming requests 

and outgoing model responses.

In our experiments, ExLlamaV2 demonstrated remarkable efficiency in hand-

ling lower-bit quantization formats, allowing us to fit larger models within the 

24 GB VRAM constraint of our GPU. Below are some examples of its perfor-

mance:

1.	 Llama 3.1 (8 Billion Parameters):

	 a.	 Quantization: 8 bits-per-weight

	 b.	 Context Length: 32,768 tokens

	 c.	 VRAM Usage: 9 GB

2.	 Mistral Nemo (12 Billion Parameters):

	 a.	 Quantization: 8 bits-per-weight

	 b.	 Context Length: 16,384 tokens

	 c.	 VRAM Usage: 12 GB

3.	 Mixtral 8x7B (56 Billion Parameters):

	 a.	 Quantization: 4 bits-per-weight

	 b.	 Context Length: 4,096 tokens

	 c.	 VRAM Usage: 22 GB

This efficiency makes ExLlamaV2 highly suitable for single GPU setups, ac-

commodating both high-performance and resource-constrained scenarios.

https://github.com/turboderp/exllamav2
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Moreover, this framework doesn’t require persistent GPU memory allocation, 

allowing the models to be loaded or unloaded quickly as needed with a sing-

le API call. This feature frees up the GPU for other applications and makes it 

quite a compelling option for environments where GPU resources are shared 

between multiple applications. However, it also has limitations when it comes 

to documentation and number of supported models, so users might need to 

convert Hugging Face models themselves if the desired model isn’t available 

directly in the EXL2 format.

In our case, ExLlamaV2 provided the right feature set and balance between 

performance and memory efficiency, enabling us to run both Whisper and an 

LLM simultaneously in our single GPU setup. This allowed us to optimize our 

resource usage and ensured we wouldn’t run into out-of-memory related issu-

es, making it the ideal candidate for self-hosting an LLM on our own premises.

Overview of the LLM-serving frameworks:

Framework Inference Engine Upsides Downsides

HuggingFace TGI

Feature-rich Inference 
API, multiple endpoints, 
support for Hugging Fa-
ce’s Chat Interface

Support for fine-tuned 
models;
Custom prompt generation;
Simple to switch Between 
models

Limited in single GPU setups;
Persistent memory usage 
required;
High hardware requirements 
for larger models;

Llama.cpp
CPU-first, high-performant 
C++ library

Compatible with most 
devices;
Allows for running large 
models on modest hardware 
using RAM instead of VRAM.

Text generation is slower on GPU;
Setup process can be complex;
Limited supported model formats 
(GGML, GGUF)

ExLlamaV2
GPU-first, highly optimi-
zed for fast LLM inference 
framework

Allows multiple concurrent 
requests;
Supports different bit-
quantization formats;
High text generation 
throughput;

Requires specific EXL2 model 
format;
Limited to GPU-only setups;
Smaller range of models to 
choose from;
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C. Step 3: 

Summarization with LLMs  
– creating a productive pipeline

For the transcript summarization workflow, we chose to work analogous to a 

map-reduce approach. This process is needed due to a particular limitation of 

language models which is the context window. This context window basically 

refers to the maximum amount of text that LLMs can consider as input for 

the generation of a response. Therefore, when dealing with longer text inputs, 

such as longer documents or, in our case, longer meeting transcripts, it’s not 

possible to simply feed the input text in its entirety to the LLM. Closed models 

such as ChatGPT, Claude or Gemini come with rather big context windows 

but for locally hosted models this comes at the expense of bigger GPU and 

memory consumption.

That’s where a map-reduce like approach is useful, since it effectively allows 

for managing long text inputs and getting around this context window limita-

tion. Here’s a basic outline of how this approach works:

1.	 Map step: In this phase, the document gets divided into smaller chunks, 

which are smaller, more manageable sections that fit within the language 

model’s context window. Each of these chunks is processed independently 

to understand its content, context and extract their key points. In our par-

ticular use case for summarizing meeting transcripts, we found out that by 

prompting the model at this stage to act as a note taker, ensuring that the 

essential aspects and context are captured, making it easy for a person who 

wasn’t at that meeting to understand the outcomes and follow-up actions. 

2.	 Reduce step: The summaries from each chunk obtained from the last 

step are then combined and are fed again to the LLM to generate a fi-

nal, coherent summary. This process involves identifying overlapping or 

redundant information from the smaller summaries, making sure that 

the main themes of the meeting are accurately represented, and finally 

creating a summary that effectively captures the key aspects of the entire 

input transcript. It is also in this step where we “steer” the output for-

mat of the final summary, e.g. how many paragraphs should it contain, 

whether it should add a list of the main themes and discussion points, etc. 
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IV. So how did we include the users and how 
was the process of integrating the tool into our 
workflows?

Building data products requires a user-centered approach to ensure they are 

usable, feasible and desirable. Following this principle for our meeting sum-

mary, the actual users were included into the development process from the 

beginning. To bring data products to life they should be accompanied via the 

following:

1.	 Ongoing evaluation and user feedback

2.	 Building user’s trust

3.	 Workflow integration and scaling

To evaluate the meeting transcription and summarization tool we started to 

use it within the data product team’s regular meetings. These weekly mee-

tings provided a practical setting to test the tool in real-world scenarios and 

assess its ability to capture key discussion points. Since we already had as-

signed minute-takers for every meeting, they were also asked to evaluate the 

tool’s summaries according to:

•	 accuracy: is the summary factually correct

•	 clarity: readability and structure of the summary

•	 relevance: are essential topics included or omitted

This structured feedback helped us to identify the areas where the tool needed 

the most improvement, especially in writing nuanced, yet concise details while 

also aligning with the established structure of manual meeting notes.

Based on this feedback, we iteratively refined the model’s prompts and adjus-

ted the format of the summaries to better align with our expectation of a com-

prehensive meeting summary. This entire process not only helped to improve 

the tool’s outputs but also allowed us to tailor its functionality to our specific 

needs and to account for the unique structure of our internal alignments.

The transparency on the capabilities but also shortcomings of the tool helped 

to align the user’s expectations and how they could integrate the tool into their 
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workflows. We additionally explained in dedicated sessions the functionalities 

as well as the underlying technologies, and how the data is handled with a 

focus on privacy (e.g. deletion after the summary creation). The combination 

of education and transparency led to gaining our user’s trust.

Additionally, we gradually rolled out and tested our summarization tool for 

different meeting formats also within different departments with a similar ap-

proach. Summary prompts can now also be customized by the users. A next 

step will be for us to create further templates for general meeting formats such 

as breakfast (we have each week a company breakfast with updates around 

the company, specific hub team weeklies or monthlies and several other arti-

facts).

Improving and learning is still an ongoing task as well as developing new work-

flows, which help us to better and faster document our meetings. Looking 

ahead, we are also exploring how to integrate these summaries into a know-

ledge base to make the content more accessible across teams.

VI. What did we learn on this journey and 
what where the biggest hurdles?

From a technical perspective, setting up the entire self-hosting infrastructure 

required initially a lot of time and resources. Managing the limitations of a sin-

gle GPU setup with restricted VRAM proved to be quite challenging, as hosting 

multiple models, such as the transcription and summarization ones, required 

an extensive experimentation and optimization to make sure they could run at 

the same time without running into out-of-memory issues.

Keeping up with the state-of-the-art advancements in LLMs and serving fra-

meworks was also another challenge of this entire process. This is due to 

the difficulty of finding a proper balance between exploring new models and 

techniques and maintaining the stability of our current setup. On one side, the 

fast pace of the field and model releases offered more opportunities to impro-

ve overall performance and efficiency. On the other hand, putting these new 

models to work can also demand significant efforts, from adapting the existing 
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infrastructure to fit the new requirements, to extensively testing their compa-

tibility and reliability compared to the existing workflows.

Key takeaways for us:

1.	 User engagement drives success. 

Though a general rule for the development of data products, this was one of 

the key elements for us.

2.	 Balancing innovation with stability. 

Staying up to date with LLM advancements is essential but requires constant 

screening of the latest developments as well as weighing the actual benefits 

vs efforts of updating our tool.

3.	 Hardware limits spark creativity.

Building on a constrained hardware environment pushed us to explore creati-

ve solutions, such as leveraging lower-bit quantization and memory-efficient 

inference engines.

____________________
Figure 2: Closed-source vs open-weight models performance on MMLU (5-shot) 

benchmark between April 2022 and July 2024 (copyright @maximelabonne)
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VII. Conclusion/Outlook:

Even though the big players from Microsoft to Google or OpenAI are moving 

fast in offering out of the box and in their platforms integrated solutions, there 

is still a benefit in exploring the potential of your own premises. Our tool all-

owed us to explore the actual performance of open LLMs and how we can use 

them internally. At the moment, the big paid models such as GPT-4o or Gemini 

outperform the open local models and offer cheap API calls to build customi-

zed solutions. Still, one should consider the fast evolution of the open LLMs 

and consider what might be possible in the not too far future. Despite that no 

data leaves our own servers and we are immediately deleting any audio or 

transcript data, which is not needed anymore.

In the end, the main task was to reduce the amount of effort for taking notes 

and also to improve the quality. To achieve this, we worked in close iterations 

with our internal users to reach a solid understanding of how they would be-

nefit from such a summary but also to show and tell about the capabilities and 

limitations of generative AI tools. Both aspects are key to a successful role out 

to gain trust in the solution and confidence in making use of it. A human still 

needs to be in the loop to critically assess the summary before it is shared with 

others.

With this in mind, we introduced the summarization tool now into several 

of our weeklies and other meeting formats, which helped us to significantly 

speed up the note taking.

If you need support in developing privacy-respecting AI products for your orga-

nization or are interested in collaborating on open-source solutions, we’d love 

to hear from you.
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https://www.feld-m.de/

